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Outline 

• Applicability of HPC to hydrometeorological flood forecasting 
– The availability of high-performance computing offers new opportunities 

for operational hydrometeorological forecasting 

– Explore possible activities to be carried out during the DRIHM project 

 

• Real-time framework for probabilistic flash flood forecasting 
and data assimilation 
– Case study: Besós basin (northeast Spain)  

– RIBS (Real-time Interactive Basin Simulator) model used in probabilistic 
way in real time.  

– Calibration through a probabilistic multiple-objective global optimization 
methodology. 

– Monte Carlo simulation for probabilistic simulation of an ensemble of basin 
states and response hydrographs at every step of the operational loop. 

 

• Data assimilation 
– Assimilation of observed discharges in real time 

– Generation of new ensemble members through perturbation 



The Besós Basin 

oTorrential basin of 1024 km2 

o Located near Barcelona city 

o Significant flash-flood risk 

Area (km2) L (km) S (m/m) tc (h) 

Mogoda 111 31.83 0.026 3.87 

Llica 146 38.71 0.023 4.73 

Garriga 151 26.41 0.026 3.36 

Mogent 182 36.66 0.032 3.99 

Montcada 221 43.24 0.015 6.15 

Gramenet 1012 63.45 0.015 8.26 



RIBS: Distributed rainfall-runoff model 

Runoff (mm/h) 

Rainfall (mm/h) Results (m3/s) 

Digital Terrain 
Distributed variables 



Probabilistic calibration of RIBS 

•  Local soil parameters (Brooks-Corey parameterization) 
•K0n normal hydraulic conductivity in surface [mm·h-1] 
•θs  saturation moisture. 
•θr  residual moisture. 
•ε  porosity of the soil 
 

•  Global hydrological parameters: 
•f  variation of hydraulic conductivity in depth [mm-1] 
•a  anisotropy ratio between hydraulic conductivities in the two main directions [-] 
•Kv ratio between flow velocity in channel and flow velocity in hillslope [-] 
•Cv mean flow velocity in channel [m·h-1] 

log10(f) Cv Kv 

Minimum 0.00007 3 13849 

Maximum 0.1 18 19941 

Mean -2.17 10.33 17761.67 

Variance 1.03 16.53 2616997.33 

Standard deviation 1.02 4.07 1617.71 

Coefficient of Skewness -0.45 0.0046 -0.90 
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PARETO SOLUTIONS 



Probabilistic simulation 
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Real-time model parameters update 
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Tentative implementation 

• Probabilistic simulation 
– Ensembles of 100 members sampled from a priori distribution of model 

parameters 

 

• Observation 
– Observations taken only at one streamflow gauge 

– Observations considered 100% reliable 

– Verification trough NSE in last two hours 

 

• Model update 
– Selection of 20 “best” ensemble members 

– Generation of 80 more members through perturbation of model 
parameters 

 

• Rainfall forecast 
– Only one “perfect” rainfall forecast 

 

 



Model results 

Selected members in 
previous time step 

State propagation in 
current time step 

Selected members in 
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Forecast for current 
time step 

Observation in current 
time step 



Forecast in Mogoda 

NSEf 

Forecast t=23 t=24 t=25 t=26 

No data assimilation -0.13 -8.31 0.04 0.59 

With data assimilation -0.08 -6.95 0.44 0.59 

CR (α = 5%) 

Forecast t=23 t=24 t=25 t=26 

No data assimilation 0.80 0.40 1.00 1.00 

With data assimilation 0.80 0.60 1.00 0.20 



Forecast in Ripoll 

NSEf 

Forecast t=22 t=24 t=26 t=28 

No data assimilation -66.45 0.62 0.46 -1.23 

With data assimilation -34.06 0.29 0.80 -2.30 

CR (α = 5%) 

Forecast t=22 t=24 t=26 t=28 

No data assimilation 0.11 0.44 1.00 1.00 

With data assimilation 0.11 0.56 1.00 1.00 



Conclusion 

• Distributed rainfall-runoff models 
– Distributed rainfall-runoff models are a good option to include basin 

variability for real-time modeling 

– They can be calibrated probabilistically 

– Very demanding in computational terms (HPC is required) 

 

• Ensemble-based probabilistic simulations 
– Simple way to make probabilistic predictions 

– They can include variability in rainfall, parameters or basin states 

– Realistic way to show different sources of model uncertainty explicitly 

 

• Real-time model update 
– There are many possible alternatives for data assimilation 

– The approach seems promising and worthwhile trying 


