DIHMS Final Meeting EGU General Assembly - Vienna, 6th April 2011

Probabilistic simulation and data assimilation with deterministic rainfallrunoff models

L. Garrote, L. Mediero, A. Chávez

Research Group on Hydroinformatics and Water Management Technical University of Madrid

A. Atencia, C.Llasat

Group of Analysis of Meteorological Hazards

University of Barcelona

Outline

• Applicability of HPC to hydrometeorological flood forecasting

- The availability of high-performance computing offers new opportunities for operational hydrometeorological forecasting
- Explore possible activities to be carried out during the DRIHM project
- Real-time framework for probabilistic flash flood forecasting and data assimilation
 - Case study: Besós basin (northeast Spain)
 - RIBS (Real-time Interactive Basin Simulator) model used in probabilistic way in real time.
 - Calibration through a probabilistic multiple-objective global optimization methodology.
 - Monte Carlo simulation for probabilistic simulation of an ensemble of basin states and response hydrographs at every step of the operational loop.

• Data assimilation

- Assimilation of observed discharges in real time
- Generation of new ensemble members through perturbation

The Besós Basin

- $\odot Torrential \ basin \ of \ 1024 \ km^2$
- \circ Located near Barcelona city
- Significant flash-flood risk

	Area (km ²)	L (km)	S (m/m)	t _c (h)
Mogoda	111	31.83	0.026	3.87
Llica	146	38.71	0.023	4.73
Garriga	151	26.41	0.026	3.36
Mogent	182	36.66	0.032	3.99
Montcada	221	43.24	0.015	6.15
Gramenet	1012	63.45	0.015	8.26

RIBS: Distributed rainfall-runoff model

Results (m³/s)

Probabilistic calibration of RIBS

- Local soil parameters (Brooks-Corey parameterization)
 - K_{on} normal hydraulic conductivity in surface [mm^{-h⁻¹}]
 - • θ_s saturation moisture.
 - • θ_r residual moisture.
 - • $\boldsymbol{\varepsilon}$ porosity of the soil

• Global hydrological parameters:

• f variation of hydraulic conductivity in depth [mm⁻¹]

•a anisotropy ratio between hydraulic conductivities in the two main directions [-]

• K_{ν} ratio between flow velocity in channel and flow velocity in hillslope [-]

• C_{ν} mean flow velocity in channel [m⁻¹]

PARETO SOLUTIONS

	$log_{10}(f)$	Cv	Kv
Minimum	0.00007	3	13849
Maximum	0.1	18	19941
Mean	-2.17	10.33	17761.67
Variance	1.03	16.53	2616997.33
Standard deviation	1.02	4.07	1617.71
Coefficient of Skewness	-0.45	0.0046	-0.90

Probabilistic simulation

Real-time model parameters update

Uncertainty propagation loop

- ${\rm \circ}$ State variables
- **o Model parameters**
- \circ Combination of both

Real-time operational loop

• Probabilistic simulation

 Ensembles of 100 members sampled from a priori distribution of model parameters

• Observation

- Observations taken only at one streamflow gauge
- Observations considered 100% reliable
- Verification trough NSE in last two hours

• Model update

- Selection of 20 "best" ensemble members
- Generation of 80 more members through perturbation of model parameters

Rainfall forecast

Only one "perfect" rainfall forecast

Model results

Forecast with data assimilation t=24

Forecast in Mogoda

NSE _f					
Forecast	t=23	t=24	t=25	t=26	
No data assimilation	-0.13	-8.31	0.04	0.59	
With data assimilation	-0.08	-6.95	0.44	0.59	

CR (a = 5%)				
Forecast	t=23	t=24	t=25	t=26
No data assimilation	0.80	0.40	1.00	1.00
With data assimilation	0.80	0.60	1.00	0.20

Forecast in Ripoll

NSE _f					
Forecast	t=22	t=24	t=26	t=28	
No data assimilation	-66.45	0.62	0.46	-1.23	
With data assimilation	-34.06	0.29	0.80	-2.30	

CR (a = 5%)				
Forecast	t=22	t=24	t=26	t=28
No data assimilation	0.11	0.44	1.00	1.00
With data assimilation	0.11	0.56	1.00	1.00

Conclusion

• Distributed rainfall-runoff models

- Distributed rainfall-runoff models are a good option to include basin variability for real-time modeling
- They can be calibrated probabilistically
- Very demanding in computational terms (HPC is required)

• Ensemble-based probabilistic simulations

- Simple way to make probabilistic predictions
- They can include variability in rainfall, parameters or basin states
- Realistic way to show different sources of model uncertainty explicitly

• Real-time model update

- There are many possible alternatives for data assimilation
- The approach seems promising and worthwhile trying